
Whats and whys for

beginners
by Justas Trimailovas @ VilniusPy

github.com/trimailov
j.trimailovas@gmail.com

Myself and Python

learnt basics of C from university, 
programming seemed arduous

Myself and Python

2 years ago  
discovered Python through Udacity’s MOOC

and I loved it!

Myself and Python

little by little advancing through Python, Linux and
growing interest in various technologies

About this talk

“5 WTFs in Python”

About this talk

answer questions raised by novices in Python  
(or in programming in general)

About this talk

answer questions raised by novices in Python  
(or in programming in general)

novice me

About this talk

answer questions raised by novices in Python  
(or in programming in general)

novice me

*questions are not in any particular order

About this talk

things you can learn from a lazy guy,  
so you can improve yourself little faster

Not in this talk

Python 101

How to setup your machine for Python
development

vim, emacs, Sublime Text, PyCharm is best
Python IDE

Not in this talk

Python 101

How to setup your machine for Python
development

vim, emacs, Sublime Text, PyCharm is best
Python IDE

Not in this talk

Python 101

How to setup your machine for Python
development

vim, emacs, Sublime Text, PyCharm is best
Python IDE

Not in this talk

Python 101

How to setup your machine for Python
development

vim, emacs, Sublime Text, PyCharm is best
Python IDE

Not in this talk

Python 101

How to setup your machine for Python
development

vim, emacs, Sublime Text, PyCharm is best
Python IDE

Though you can freely ask about all that later

How can software
have so many files?

> tree .
.
└── first
 ├── baz.py
 ├── functions
 │ ├── __init__.py
 │ └── bar.py
 └── other_functions
 ├── __init__.py
 └── biz.py

WHAT?! empty?!

> cat first/functions/bar.py

def drink_beer(where):
 print(“fun @ %s” % where)

> cat first/baz.py

from functions import bar

bar.drink_beer(where=“snekutis”)

What is self?

class Character:
 def __init__(self, int=1, chr=1, str=1):
 self.int = int # intelligence
 self.chr = chr # charisma
 self.str = str # strength

 def learn(self):
 self.int += 1

 def socialize(self):
 self.chr += 1

 def train(self):
 self.str += 1

class Character:
 def __init__(self, int=1, chr=1, str=1):
 self.int = int # intelligence
 self.chr = chr # charisma
 self.str = str # strength

 def learn(self):
 self.int += 1

 def socialize(self):
 self.chr += 1

 def train(self):
 self.str += 1

 def get_self(self):
 print(self)

>>> knight = Character()
>>> knight.get_self()
>>> <Character object at 0x106160a20>

self is an instance of a class

Method

class Character:
 ..
 def learn(self):
 self.int += 1
 ..

Function

..
 def learn(character):
 character.int += 1
 ..

Instance of a method of is passed automatically, but not received

Received

class Character:
 ..
 def learn(self):
 self.int += 1
 ..

Passed

 knight.learn()

Instance of a method of is passed automatically, but not received

Received

class Character:
 ..
 def learn(self):
 self.int += 1
 ..

Passed

 knight.learn()

Instance of a method of is passed automatically, but not received

Why so many
__underscores__?

It’s a Python convention used for builtin attributes and to
avoid namespace conflicts

More conventions exist

_internal_use

__very_private -> _classname__very_private

>>> dir(knight)
['__class__',
 '__delattr__',
 '__dict__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__gt__',
 '__hash__',
 '__init__',
 '__le__',
 '__lt__',
 '__module__',

 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__weakref__',
 'chr',
 'int',
 'learn',
 'socialize',
 'str',
 'train']

__call__ - method called on instance call
__new__ - method called on instance creation (before __init__)
__init__ - method for object initialization
__dict__ - get attribute:value dictionary
__doc__ - return docstring
__eq__ - describes ‘==‘ operator
__lt__ - describes ‘<‘ operator, etc.

https://docs.python.org/3.4/reference/datamodel.html

https://docs.python.org/3.4/reference/datamodel.html

What is super?

class Knight(Character):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

self.race = “Human”

Character: __init__, learn, socialize, train

Knight: __init__, learn, socialize, train

If super() would not have been used, child class would
have overriden it’s parent’s __init__ method.

Then initialized Knight would have race, but no int, str or
chr.

super() let’s us call same method from parent class.
This way we can very flexibly extend classes.

Character: __init__, learn, socialize, train

Knight: __init__, learn, socialize, train

super()

*Python allows multiple inheritance, same principles apply, though some cases can be trickier.
Reading about Python’s Method Resolution Order (MRO) is a must.

But what is this magic with
*args and **kwargs?

But what is this magic with
*args and **kwargs?

*in my head it sounds like arcs and quarks

* - unwraps positional arguments
** - unwraps keyword arguments

* - unwraps positional arguments
** - unwraps keyword arguments

You can name them what ever you like, e.g. *arcs, **quarks.
Though *a, **kw and similar are usual.

Basically what it means, you can let function to accept
arbitrary arguments

class Knight(Character):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

self.race = “Human”

baby_knight_params = {‘int’: 0,
 ‘chr’: 5,
 ‘str’: 15}

knight = Knight(**baby_knight_params)

class Character:
 def __init__(self, *args, **kwargs):
 ..
 self.hp = kwargs.get(“hp”, 50)

def ugly_function(*args, **kwargs):
 do_ugly_stuff_with(args, kwargs)

def get_ugly_params():
 random_args = call_api()
 sorted_args = sort_args(random_args)

 params_as_dict = call_dict_api()

 ugly_function(*sorted_args, **params_as_dict)

When you’re lazy,
as *args and **kwargs are just shorter

What is yield?

yield returns a generator object

Function

def simple():
 l = []
 for i in range(5):
 l.append(i)
 return i

Generator

def simple():
 for i in range(5):
 yield i

Function

def simple():
 l = []
 for i in range(5):
 l.append(i)
 return i

Generator

def simple():
 for i in range(5):
 yield i

Saves memory
Lazy evaluation

Could be endless (RNG)
generator.__next__()

Tips and tricks

What this code does?

class Knight(Character):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

self.race = “Human”

Answer: good editor and ctags

good editor - can read tags files or generate them. By
using shortcut, we can jump to class/method definition

ctags - software which indexes your code

Bonus answer: ag, ack, grep

>>> ag ‘class Character’

What this code does at runtime?

Answer: pdb and ipdb

import ipdb; ipdb.set_trace()
or

import pdb; pdb.set_trace()

Conclusions and
recomendations

Hold your horses: read manuals, documentations,
sources

Python and brief C knowledge let’s me appreciate
and enjoy programming

Try to understand how things work in general way,
no need to guess

Low level knowledge helps

